Galli (2021)

Self-Fulfilling Debt Crises and Multiple Equilibria

Role for self-fulfilling beliefs in sovereign default crises

- Motivated by emerging markets experience and Eurozone crisis
- Country bond spreads often disconnected to fundamentals
- EZ debt crisis: high spreads as bad equilibrium, motivation for OMT

Important link between spreads, govt policy and fundamentals

- Two-way empirical relationship between spreads and cycle
- Austerity policies in response to EZ crisis ([taly 1], [taly 2], [Spain])
- Micro evidence of spreads pass-through to investment, output
- ⇒ **Default risk** is **disruptive** for the economy

Galli (2021)

Self-Fulfilling Debt Crises and Multiple Equilibria

Debt crises induce austerity and generate belief-driven equilibria. Mechanism:

- confidence crisis: higher spreads, costlier to borrow
- govt adjusts funding strategy: borrowing ↓, taxes ↑
- wealth effect on households: private investment ↓
- growth ↓, future default probs ↑ ⇒ pessimistic expectations verified

Setup and Government

Setup

- Two periods, t = 0, 1
- Benevolent govt, risk-averse households, foreign risk-neutral lenders

Government

• Starts with initial debt B_0 , faces constraints

$$B_0 = T_0 + q_0 B_1 \ (1 - \delta_1) B_1 = T_1$$

- No initial default on B₀
- Cannot commit to repayment $(1-\delta_1)$

Households

Preferences

$$\log(c_0) + \beta \mathbb{E}_0 \log(c_1)$$

- Save through capital k_t , pay lump-sum taxes T_t
- Concave production function $f(k_t)$, full depreciation, backyard technology
- Default \Rightarrow random output cost $z_1 \sim G$
- Start with initial capital k_0 , face constraints

$$c_0 = f(k_0) - T_0 - k_1$$

$$c_1^R = f(k_1) - T_1$$

$$c_1^D = f(k_1)(1 - z_1)$$

Lenders and Timing

Lenders

- Lenders are atomistic, risk neutral, perfectly competitive
- Anticipate tax policy + household investment response to debt auction
- Per-bond recovery upon default: $\eta \frac{z_1 f(K_1)}{B_1}$ (for today, assume recovery = 0)

Timing

- Government issues debt B₁
- Lenders bid price q₀
- Taxes $T_0 = B_0 q_0 B_1$ are set to clear the budget constraints (key, more later)
- Households choose c_0 , k_1 taking government tax/debt policy as given

Equilibrium Definition

Definition (Equilibrium)

A competitive equilibrium is a collection of government **debt and default choices** $\{B_1, \delta_1\}$, households' **investment choice** $\{K_1\}$ and a **debt price function** $\{\mathcal{Q}(W_0, B_1)\}$ such that, given initial wealth W_0 ,

- households choose investment to maximise their expected utility, given government policies and debt prices;
- the debt price function $\mathcal{Q}(W_0, B_1)$ satisfies creditors' zero-profit condition for all debt levels $B_1 \in \mathbb{R}$;
- government policies maximise households' expected utility, subject to the households' investment response and the debt price function.

Outline:

- Default policy and private sector investment
- Conditions for existence of multiple debt price schedules
- Government policy and multiple equilibria
- Role for external policy intervention

Default Policy

Default policy at t = 1

Default decision

$$\max \left\{ f(K_1) - B_1, f(K_1)(1-z_1) \right\}$$

Repay IFF

$$z_1 \geq \widehat{z}_1(K_1, B_1) := rac{B_1}{f(K_1)}$$

Households Investment

Aggregate capital investment $\mathcal{K}(W_0, q_0, B_1)$ satisfies

$$\frac{1}{W_0+q_0B_1-K_1}=\beta f'(K_1)\left[\frac{1-G\left(\widehat{z}_1\right)}{f(K_1)-B_1}+\frac{G\left(\widehat{z}_1\right)}{f(K_1)}\right]$$

Debt overhang: default expectations discourage investment

- Household investment complementarities
- Investment response to debt prices/taxes nonlinear

Investment externality: HH take all taxes as given \rightarrow do not internalise effect of K_1 on

- future default probabilities
- current debt prices and taxes

Lenders' Zero Profit Condition

• Set of **zero profit prices** at which lenders are willing to buy B_1

$$q_0 = \frac{1}{R} \left[1 - G(\widehat{\mathbf{z}}_1) \right] \tag{1}$$

with
$$\widehat{z}_1 = \widehat{z}_1(K_1, B_1)$$
 and $K_1 = \mathcal{K}(W_0, q_0, B_1)$

- Debt prices/revenues have t = 0 wealth effect on investment, via taxation
- Multiple zero profit prices: (1) may have multiple solutions for some (W_0, B_1)

Recap: Debt Pricing Equations and Multiple Equilibria

Debt price q, lenders' discount factor = 1, recovery upon default = 0

This paper's zero profit condition:

$$q_0 = \operatorname{Prob}\left(z_1 \geq \frac{B_1}{f\left(\mathcal{K}(W_0, q_0, B_1)\right)}\right)$$

Calvo (1988) setup:

• govt picks debt revenues a today, repay $a = \frac{1}{q}$ tomorrow

• repay iff
$$\underbrace{y-a/q}_{\text{repay}} \ge \underbrace{y(1-z)}_{\text{default}} \Rightarrow z \ge \frac{a/q}{y}$$

(y deterministic, z random)

zero profit condition is

$$q = \operatorname{Prob}\left(z \ge \frac{a/q}{y}\right)$$

Multiple Zero Profit Prices

For a given W_0

 $investment \rightarrow debt \ value$

debt prices \rightarrow investment

Debt Price Schedules and Selection Criterion

For a given W_0

Split correspondence into single-valued schedules

- 'Good' schedule: upper envelope (black + blue)
- 'Bad' schedule: lower envelope (black + red)
- **Assumption:** govt observes schedule *before* debt issuance (\approx secondary mkt)

Government Problem

Taking lenders' and HH behaviour as given

$$\begin{aligned} \max_{B_1,\ q_0,\ K_1} & \quad u(W_0 + q_0B_1 - K_1) + \beta \int \max\Big\{u\Big(f(K_1) - B_1\Big), u\Big(f(K_1)(1 - z_1)\Big)\Big\}dG(z_1) \\ \text{s.t.} & \quad q_0 = \mathcal{Q}^i(W_0, B_1), \quad i \in \{g, b\} \\ & \quad K_1 = \mathcal{K}(W_0, q_0, B_1) \\ & \quad W_0 \quad \text{given} \end{aligned}$$

Optimality

Trade-off between funding sources \rightarrow taxation vs. debt issuance

$$f'(\mathcal{K}_1)\left[\frac{1-G(\widehat{z}_1))}{f(\mathcal{K}_1)-B_1}+\frac{G(\widehat{z}_1)}{f(\mathcal{K}_1)}\right]=\frac{1}{\mathcal{Q}^i+B_1\mathcal{Q}_B^i}\left[\frac{1-G(\widehat{z}_1)}{f(\mathcal{K}_1)-B_1}\right]$$

marginal product of capital |eve| + sensitivity of default risk (debt issuance)

When default risk is zero: first best

- main frictions absent (limited commitment + investment externality)
- $f'(K_1^{FB}) = R$
- possible for all $W_0 \geq W_0^{FB}$

Risky policy

- investment below first-best: $K_1 < K_1^{FB}$
- debt is risky: $Q^i < 1/R$

Multiplicity

There may be multiple schedules... but is govt ever affected by them?

When motive to borrow is strong enough, yes:

• bad schedule ⇒ taxation cheaper source of funding ⇒ austerity

Equilibria

Discussion

An interpretation of the austerity debate through the lens of the model

- do higher surpluses reduce debt or are self defeating?
- $\uparrow B_1$ increase debt revenues, reduce taxes, increase C_0, K_1
- ⇒ debt price level/sensitivity and MPK are key

Bad equilibrium resembles the **EZ crisis**

- confidence crisis makes debt prohibitively costly
- substitute debt funding with taxes, depress consumption and investment
- consistent with procyclical fiscal policy regularity in EM

Role for Policy

Key model frictions:

- Lack of commitment to repay
 - Lack of commitment to fiscal policy
 - lenders' coordination failure
 - Private investment externality

Solutions? Intervention of a large, external lender (e.g. IMF or ESM)

- Non defaultable debt ⇒ first best solution (≈ CB intervention?)
- Pari-passu lending
- Senior lending
- Investment subsidies with commitment

Pari-passu lending

- IMF commits to buy x% of debt at good zero profit price
 - no preferred creditor status, participates in debt auction

- Private lenders' beliefs have smaller impact on revenues, investment, debt value
- Marginal effect on debt value → shared among all creditors

Senior lending

• IMF commits to buy x% of debt, is **senior** to private lenders (\approx risk-free lending)

- Private lenders' beliefs have small impact on revenues, investment, debt value
- ullet Marginal effect on debt value o **different impact** on senior vs. junior tranche

Fiscal Commitment

$$B_0 = T_0 + q_0 B_1$$

Fiscal commitment (T_0) alone

- Pick T_0 , B_1 jointly, and consistent with Q^g
- Then only $q_0 = \mathcal{Q}^g(W_0, B_1)$ clears the govt BC
- Selecting the debt price schedule, rather than take it as given

(Big) but

- govt BC violated off-equilibrium (Bassetto (2005))
- ullet govt must **commit to strategy**, not action o something must adjust to clear BC
 - debt chosen ex-ante, taxes adjust (this paper)
 - taxes chosen ex-ante, debt adjusts (Calvo (1988), Lorenzoni and Werning (2019))

Investment subsidies with commitment

• Optimality in planner's problem

$$\frac{f'(\mathcal{K}_1)}{1-B_1\mathcal{Q}_{\mathcal{K}}^i}\left[\frac{1-G(\widehat{z}_1))}{f(\mathcal{K}_1)-B_1}+\frac{G(\widehat{z}_1)}{f(\mathcal{K}_1)}\right]=\frac{1}{\mathcal{Q}^i+B_1\mathcal{Q}_B^i}\left[\frac{1-G(\widehat{z}_1)}{f(\mathcal{K}_1)-B_1}\right]$$

- Subsidy $\tau_0^k = B_1 Q_K^i$ corrects households' underinvestment
- · Additional policy tool: can deal with off-equilibrium prices
- If contractible, government internalises effect of investment on debt prices
 - Constrained efficient allocation, superior to good equilibrium w/out commitment

Equilibria With Policy

Summing Up

Confidence crises and fiscal policy

- more expensive to borrow, tighter govt budget set
- cut borrowing, raise taxes ⇒ depress investment ⇒ lower welfare

Different take on "austerity"

- funding source trade-off through the lens of the model
- fiscal tightening preferable to high (extreme here) borrowing costs
- strong austerity multiplier (one channel, there are many others)

Policy can address different frictions

- prevent coordination failure
- possible trade-off between IMF risk and issuer welfare
- commit to fiscal policy + resolve externality

Thank you!

Appendix

Households' Investment Problem

Household investment $\mathcal{K}(W_0,q_0,B_1)$ is $k_1=K_1$ fixed point of

$$\max_{k_1} u \Big(W_0 + q_0 B_1 - k_1 \Big) + \beta \int_{\widehat{z}_1(K_1, B_1)} u \Big(f(k_1) - B_1 \Big) dG(z_1)$$
$$+ \beta \int^{\widehat{z}_1(K_1, B_1)} \{ u \Big(f(k_1)(1 - z_1) \Big) \} dG(z_1)$$

- Investment complementarities: coordination problem \neq from that of lenders
- In principle, could have multiple solutions to the fixed point problem

Numerical Example Parameters

- Capital share of output $\alpha = 0.4$
- Log utility
- Households' discount factor $\beta = 0.9$
- Lenders' opportunity cost of capital R = 1.05
- Recovery parameter $\eta = 0.9$
- Default output cost $z_1 \sim N(0.5, 0.035)$ over Z = [0, 1]

Spain

Some EZ Debt Crisis Quotes

Italian Government Press Release on "Salva Italia" measures, 4/12/2011 "These urgent measures were necessary to face a serious financial crisis that has hit [...] sovereign bond markets, Italy included."

Italian PM Mario Monti, 29/12/2011

"Our economic fundamentals do no justify such a high government bond spread."

Debt Schedules and Revenues

References

- Bassetto, Marco, "Equilibrium and government commitment," *Journal of Economic Theory*, September 2005, 124 (1), 79–105.
- Calvo, Guillermo A, "Servicing the Public Debt: The Role of Expectations," *American Economic Review*, September 1988, 78 (4), 647–61.
- Galli, Carlo, "Self-fulfilling debt crises, fiscal policy and investment," *Journal of International Economics*, 2021, 131, 103475.
- Lorenzoni, Guido and Iván Werning, "Slow Moving Debt Crises," American Economic Review, September 2019, 109 (9), 3229–63.